Phosphorylation of rat tyrosine hydroxylase and its model peptides in vitro by cyclic AMP-dependent protein kinase.
نویسندگان
چکیده
The enzyme tyrosine hydroxylase catalyzes the first step in the biosynthesis of dopamine, norepinephrine, and epinephrine. Tyrosine hydroxylase is a substrate for cyclic AMP-dependent protein kinase as well as other protein kinases. We determined the Km and Vmax of rat pheochromocytoma tyrosine hydroxylase for cyclic AMP-dependent protein kinase and obtained values of 136 microM and 7.1 mumol/min/mg of catalytic subunit, respectively. These values were not appreciably affected by the substrates for tyrosine hydroxylase (tyrosine and tetrahydrobiopterin) or by feedback inhibitors (dopamine and norepinephrine). The high Km of tyrosine hydroxylase correlates with the high content of tyrosine hydroxylase in catecholaminergic cells. We also determined the kinetic constants for peptides modeled after actual or potential tyrosine hydroxylase phosphorylation sites. We found that the best substrates for cyclic AMP-dependent protein kinase were those peptides corresponding to serine 40. Tyrosine hydroxylase (36-46), for example, exhibited a Km of 108 microM and a Vmax of 6.93 mumol/min/mg of catalytic subunit. The next best substrate was the peptide corresponding to serine 153. The peptide containing the sequence conforming to serine 19 was a very poor substrate, and that conforming to serine 172 was not phosphorylated to any significant extent. The primary structure of the actual or potential phosphorylation sites is sufficient to explain the substrate behavior of the native enzyme.
منابع مشابه
Tyrosine hydroxylase: a substrate of cyclic AMP-dependent protein kinase.
Data demonstrating the direct phosphorylation of tyrosine hydroxylase [tyrosine 3-monooxygenase; L-tyrosine, tetrahydropteridine:oxygen oxidoreductase (3-hydroxylating), EC 1.14.16.2] purified from rat pheochromocytoma by ATP, Mg2+ and cyclic AMP-dependent protein kinase catalytic subunit are presented. The incorporation of phosphate is highly correlated with the activation of the hydroxylase w...
متن کاملRegulation of human tyrosine hydroxylase activity. Effects of cyclic AMP-dependent protein kinase, calmodulin-dependent protein kinase II and polyanion.
To determine the regulatory mechanism for human tyrosine hydroxylase, we examined modulations of the activity of the enzyme from human pheochromocytoma by cyclic AMP-dependent protein kinase, calmodulin-dependent protein kinase II and polyanion. The most remarkable activation was observed when the enzyme was assayed at physiological pH (pH 7) after being subjected to phosphorylation by cyclic A...
متن کاملPhosphorylation of tyrosine hydroxylase by cyclic GMP-dependent protein kinase.
Tyrosine hydroxylase purified from rat pheochromocytoma was phosphorylated and activated by purified cyclic GMP-dependent protein kinase as well as by cyclic AMP-dependent protein kinase catalytic subunit. The extent of activation was correlated with the degree of phosphate incorporated into the enzyme. Comparable stoichiometric ratios (0.6 mol phosphate/mol tyrosine hydroxylase subunit) were o...
متن کاملActivation of tyrosine hydroxylase in PC12 cells by the cyclic GMP and cyclic AMP second messenger systems.
Tyrosine hydroxylase, the rate-limiting enzyme in catecholamine biosynthesis, is subject to regulation by a variety of agents. Previous workers have found that cyclic AMP-dependent protein kinase and calcium-stimulated protein kinases activate tyrosine hydroxylase. We wanted to determine whether cyclic GMP might also be involved in the regulation of tyrosine hydroxylase activity. We found that ...
متن کاملThe multifunctional Ca2+/calmodulin-dependent protein kinase mediates Ca2+-dependent phosphorylation of tyrosine hydroxylase.
Stimulation of rat pheochromocytoma PC12 cells with ionophore A23187, carbachol, or high K+ medium, agents which increase intracellular Ca2+, results in the phosphorylation and activation of tyrosine hydroxylase (Nose, P., Griffith, L. C., and Schulman, H. (1985) J. Cell Biol. 101, 1182-1190). We have identified three major protein kinases in PC12 cells and investigated their roles in the Ca2+-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurochemistry
دوره 56 3 شماره
صفحات -
تاریخ انتشار 1991